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In this article we will compare and contrast LSRTM and FWI. 
We conclude that the process of generating the FWI-imaging 
essentially amounts to nonlinear, data-domain inversion. This 
recognition facilitates a ready comparison against the data-do-
main form of LSRTM, the latter being a linear, data-domain 
inversion.

Introduction
Since the early 1990s, academic efforts aimed at improving image 
quality have been focusing on inversion-based algorithms, all 
of which are generally termed Least Squares Migration (LSM)  
(Schuster, 1993; Nemeth, et al, 1999). Figure 1 provides a brief 
history of the evolution of LSM up to the present time. While the 
initial effort of LSM was on post-stack imaging, it later shifted 
to the prestack domain (Yu et al, 2003; Dai and Schuster, 2009; 
Tang, 2009). In the early 2010s, the industry started to apply LSM 
algorithms to real data and observed improved imaging quality 
(Dong et al, 2012; Dai et al, 2013; Wang, 2014; Zeng, et al, 2014; 
Zhang et al, 2015). While early application of LSM was aimed 
at improving structural imaging on the migrated stack, industry 
demands later shifted the focus to LSM gathers and included the 
requirement that the gathers be AVO-compliant. To accommodate 
these differing needs, two classes of LSM algorithms have 
emerged from the above research efforts, namely data-domain 
LSM and image-domain LSM (Fletcher et al, 2016; Wang et 
al, 2016; Zeng et al, 2016). In more recent years, least squares 
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Summary
Least Squares RTM (LSRTM) is a powerful inversion-based 
imaging algorithm which minimizes the data misfit between 
observed seismic recordings and forward-modelled synthetic 
data. The algorithm, which can be implemented in either data 
or image domains, carries a fundamental limitation because it is 
based on a linear inversion theory which cannot accommodate 
velocity refinement as part of its model update process. Suc-
cessful application of LSRTM therefore requires highly accurate 
velocity information, and if the velocity model is in significant 
error, modelled events will not be aligned kinematically with the 
observed data, and the algorithm will tend to produce unsatisfac-
tory results.

FWI is another inversion-based algorithm that enjoys wide-
spread industry use. Unlike LSRTM, FWI poses its inverse 
problem within a non-linear framework whereby it updates the 
velocity model and associated wave paths throughout its iterative 
process, gradually aligning modelled events with observed 
events. With the recent convergence of FWI and LSRTM 
methodologies, FWI is not only being used as a velocity update 
tool, but also as a direct imaging tool, thereby achieving two key 
imaging goals, namely refining the velocity model and deriving a 
better-quality seismic image. The latter process, which is known 
as ‘FWI imaging’, has recently been gaining a lot of industry 
attention as it offers the possibility of high-quality imaging along 
with workflow simplification.
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Figure 1 Brief evolution history of Least Squares 
Migration.
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geological settings, such as refining salt geometry (Michell et al, 
2017; Xing et al, 2020; Huang et al, 2021). Another new recent 
development of high-frequency FWI is FWI imaging (Zhang et 
al, 2020; Wang et al, 2020; He, et al, 2021), which is discussed in 
more detail in this article.

Image-domain vs data-domain LSRTM
To meet different needs, two different types of LSRTM algorithms 
have been developed and used in the industry: 1) Data-domain 
LSRTM; and 2) Image-domain LSRTM.

As illustrated by Figure 2, the objective function of LSRTM 
is to minimize the data residual in L2 norm: , where 
L is the forward modelling operator, m is the reflectivity model 
(a high resolution image), which will be inverted and d is 
the observed seismic data. Typically, the data is input as shot 
gathers and for each input record a shot-based Born modelling is 
applied to generate the synthetic seismic data. For data domain 
LSRTM, synthetic shots are compared with the observed 
shots trace by trace to get data residuals, to which RTM will 
be performed, where the reflectivity update will be obtained 
after proper scaling. This demigration (Born modelling) and 
migration process are kept iterating until the data residual is 
insignificant or meets the stopping criteria. Comparing with reg-
ular RTM, data-domain LSRTM gradually refines the image by 

migrations have been applied for multiple imaging (Wong et al, 
2014; Lu et al, 2018; Cheng et al, 2020).

Full waveform inversion (FWI) (Tarantola, 1984; Pratt et al, 
1998; Sheng et al, 2006; Virieux and Operto, 2009; Warner et al, 
2013) has developed over the years to provide a high-resolution 
velocity update which is more conformable with geological 
structures. FWI seeks an optimized solution by minimizing the 
differences between recorded and synthetic seismic data, but 
when the time shifts between the two datasets are larger than half 
of one cycle it can prevent convergence to a global minimum; 
it converges to a local minimum instead. To mitigate this cycle 
skipping problem, a reflection tomography model can be used 
as the FWI initial model with inversion starting from a low 
frequency and gradually increasing to higher frequencies, or other 
objective functions can be adopted which are less affected by 
cycle-skipping: Laplacian-Fourier domain FWI (Shin and Cha, 
2009), reflection travel time inversion with dynamic warping 
(Ma et al, 2012; Ma and Hale, 2013), envelope inversion (Wu 
et al, 2014), adaptive waveform inversion (Warner, et al 2016), 
and time-lag FWI (Wang et al, 2019). Dynamic matching FWI 
(Mao et al, 2020) has proved to be a robust FWI algorithm for 
high-resolution model building. Because of these successful mit-
igation schemes for avoiding cycle skip, FWI is widely used to 
resolve challenging issues in velocity model building in complex 

Figure 2 Schematic diagram illustrating data-domain 
LSM.

Figure 3 (A) regular RTM image; (B) Data-domain LSRTM image of same input as Figure 3A.
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Data-domain LSRTM is an iterative approach, typically 
requiring many iterations to converge, which can be expen-
sive. Another shortcoming of the data domain approach is its 
non-effectiveness to balance the amplitude due to non-uniform 
illumination. To improve amplitude fidelity of the final image, 
and generate LSM gathers, image-domain LSRTM has been 
proposed and widely applied.

The image-domain LSM is based on the direct solution to 
the L2 norm-based objective function of least squares migration 
which is formulated as m* = (H)−1m, where m is the regular 
RTM image, and m* is the image-domain LSRTM image. 
The difference between these two is the Hessian inverse (H)−1. 
Image-domain LSRTM is typically a single iteration approach. 

additional residual imaging, and each iteration hopefully adds 
more detail to the final image and ultimately produces an image 
with high resolution and quality.

Figure 3B shows an early example of data-domain LSRTM 
image. Compared with conventional RTM images conventional 
RTM image (Figure 3A), data-domain LSRTM can improve the 
focusing and coherency of events (Wang, 2014). The inversion 
image is more broadband, which is also indicated by the spectrum 
comparison, showing spectrum expansion at both the low and 
high-frequency ends (the green curve is for RTM and the red 
curve is for LSRTM). In particular, data-domain LSRTM is 
very effective at enhancing low frequencies, which is helpful to 
improve steep-dip events such as steep-dip faults.

Figure 4 Schematic diagram illustrating image-
domain LSRTM.

Figure 5 Left shows the migration stacked images, and right shows the migration gathers. The upper row is the regular RTM result, and the bottom row is the image-domain 
LSRTM result.
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pensate the amplitude due to non-uniform illumination, therefore 
improving the AVO fidelity.

Challenges of data-domain LSRTM
Data-domain LSRTM is an iterative data-fitting process. The 
objective is to fit the synthetic data, which is modelled using the 
current reflectivity model and the latest velocity model, to the 
observed data. It is a linear algorithm because the inverted result 
is the reflectivity model, not the velocity model. During iterations, 
the velocity model is fixed, so the wave propagation paths are not 
changed during the iterative process. The underlying fundamental 
assumption is that the velocity model is accurate, and kinematically 
the modelled synthetic events align with the observed events.

However, in the case where the velocity model contains sig-
nificant errors, the synthetic data will not be able to kinematically 
align with the observed data, and the misfit will increase as offset 
increases. In such cases, the objective to reduce residual by iter-
ating the process will not converge as the velocity is unchanged 
from one iteration to another.

To mitigate the non-convergence issue created by velocity 
errors, an algorithm called adaptive LSRTM was developed 
(Zeng et al, 2016). The basic idea is to align an observed event to 
the synthetic event by dynamic warping. As shown in Figure 6, 
due to velocity errors, the modelled events do not align with the 
observed ones as indicated by the arrows. Dynamic warping was 
applied to align the observed shot gather to the synthetic shot. The 
coloured background is the amount of time shift needed to align 
the two datasets. Using the warped input to replace the original 
observed shots, LSRTM can converge better. Figure 7 is an 
example which shows this adaptive LSRTM strategy can enable 
the convergence and improve image quality.

Though adaptive data-domain LSRTM can help to improve 
convergence, the process modifies the observed data to better fit 
the synthetic data (i.e., rather than the other way around), and 
is thus consistent with the current, erroneous, velocity model. 
A more natural way to enable the convergence is to update the 
velocity model itself so that the synthetic data kinematics are 
modified to fit those of the observed data.

Convergence of LSRTM and FWI
There are two major steps for depth imaging: 1) Velocity model 
building; 2) depth migration. FWI has been widely used as an 
inversion-based velocity update tool, while the counterpart for 
depth migration side is the data-domain LSRTM. There is a clear 
trend of convergence of these two inversion-based algorithms. 

There are different ways to approximate the Hessian operator: 1) 
A point-spreading function (PFS) based approach (Fletcher et al, 
2016); and 2) A reflectivity-based approach (Wang et al, 2016; 
Zeng et al, 2016). Additionally, image-domain LSRTM can be 
integrated with data-domain LSRTM to make a hybrid approach 
to combine the advantages of both algorithms.

In this article, we briefly describe the reflectivity-based 
image-domain LSRTM. Referring to Figure 4, the upper-left 
image is the regular RTM image. To start the image-domain 
LSRTM, post-migration processing is first applied to the final 
RTM image to create an initial reflectivity image which has 
higher S/N and more balanced amplitude (shown upper-right 
in Figure 4), in which a round-trip of demigration (Born mod-
elling) followed by remigration of the synthetic data is applied 
to generate an image. During the Born modelling, the same 
acquisition geometry as the original data is used to simulate the 
real and imperfect acquisition. After getting the new remigration 
image (shown at the lower-right image in Figure 4), an inverse 
matching filter is designed which matches the remigrated image 
to the initial reflectivity image and is used to approximate the 
inverse Hessian operation. Then the obtained inverse Hessian 
filter is applied to the original RTM image (upper left) to get the 
image-domain LSRTM image (at lower left in Figure 4).

Two important pieces of information are revealed by com-
paring the initial reflectivity image (upper right), with the 
remigration image (lower right): 1) amplitude changes (due to 
illumination issues) and 2) migration artifacts (due to imperfect 
acquisition or propagation effects from a complex velocity model 
such as salt body). The inverse matching filters effectively use 
these two pieces of information to achieve amplitude compensa-
tion, and therefore improve amplitude fidelity of the final image 
and remove/reduce migration artifacts and improve coherency 
and S/N of the final image.

Figure 5 shows an example of image-domain LSRTM. As 
compared with the regular RTM result (upper row), the image 
domain LSRTM (bottom row) can reduce the migration artifacts, 
boost weak subsalt signals, and the stack image is more coherent 
with better S/N ratio and more balanced amplitudes. For this 
example, two shallow salt bodies can be seen in the stacked 
images; the small shallow salt body on the left and the large 
salt body on the right. Due to illumination effects of the salt, in 
the subsalt area the amplitude is not balanced, especially in the 
migration gathers. More near-offset energy is penetrating through 
between the salts and more energy is blocked by the salt bodies 
at the far offset. The image-domain LSRTM can effectively com-

Figure 6 (A) synthetic shot created by Born modelling; 
(B) Observed shot before dynamic warping; (C) 
observed shot after dynamic warping to the synthetic 
shot.
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frequencies, and each using the final model of the former pass as 
its initial model (by contrast the linear LSRTM process performs 
a single band inversion which simultaneously incorporates 
information from all frequencies).

From Figure 8 it should be apparent that there are strong 
analogues between FWI imaging and LSRTM at all stages except 
at the end where FWI imaging requires an additional step, namely 
computation of the normal derivative of the final velocity model. 
If we consider the existence of this additional step alongside the 
algorithmic differences articulated in the previous paragraph, we 
can make some informed conjectures about why FWI imaging 
often seems to provide superior resolution relative to data-domain 
LSRTM, even when both are inverting the same input data set, 
and even in cases where the velocity model is believed to be 
known with good accuracy (and thus where the ‘velocity-update’ 
advantage of FWI imaging should not be significant). First, we 
note that FWI’s differentiation step (which amounts to jw filtering 
in the frequency domain) does a high-end spectral shaping which 
ensures good support at high frequencies. While this differentiation 
process helps to emphasize the high frequencies relative to lows, it 
is obviously incapable of altering the fundamental high-frequency 
information content present in the input data, and so in theory can-
not improve resolution over the LSRTM output. Still, we posit that 
the high-frequency emphasis afforded by differentiation provides 
a practical advantage by removing the need for any ex post facto 
processing which might be required on the LSRTM image (e.g, 
cosmetic wavelet processing). Second, the multi-band approach 
inherent in FWI allows the user to select a relatively coarse prop-
agation grid for the low-frequency bands (propagation grid size is 
governed by stability and dispersion noise constraints and depends 
inversely on maximum frequency present in the passband under 
consideration), thereby allowing the use of a very high number 
of internal iterations in the data-fitting process and ultimately 
providing a very high-quality image at the low frequencies (note 
that these low-frequency Fourier components play an important 
role in steep-dip resolution). By contrast, LSRTM’s single-pass 
approach requires a very fine propagation grid as dictated by the 
maximum frequency present in the data, and the computational 
expense associated with this fine grid poses a practical limitation 
on the number of internal algorithm iterations which can be used 

For FWI, it is used not only for velocity model building, the 
high-frequency FWI result is now beyond just providing a veloc-
ity model for depth imaging but also serves as an interpretable 
product itself. On the other hand, to resolve the non-convergence 
issue of linearized data-domain LSRTM, as discussed in the last 
section, we need a non-linear version of data-domain LSRTM, 
which is able to update the velocity model to change the kinemat-
ic information, in order for synthetic data to fit the observed data.

There are a few visible efforts seeking the convergence and 
integration of these two closely related technologies. Verschuur et 
al (2016) proposes Joint Migration Inversion (JMI), in which they 
propose to alternatively update the velocity model and reflectiv-
ity image. Lu et al (2016) advocated high-frequency FWI for 
inversion beyond velocity, and use FWI for impedance inversion. 
Zhang et al (2014) approached this problem from a true amplitude 
migration and inversion perspective, for velocity, impedance, 
and reflectivity inversion, concluding that for reflection data, 
near offset data provide information for impedance inversion and 
far offset data provide information for velocity inversion. More 
recently, a few groups demonstrated that FWI imaging, which 
is the normal derivative of the high-resolution velocity model 
derived by high-frequency FWI (Huang et al, 2021), is itself an 
excellent imaging tool.

Data-domain LSRTM and FWI have very similar data flows 
as illustrated in Figure 8. Both flows use shot gathers as input, 
both perform forward modelling to generate synthetic data, 
and both try to minimize the data misfit between observed data 
and synthetic data. However, there are several key differences 
between them. First, the inversion model is different: LSRTM 
seeks to update the reflectivity model, while FWI tries to update 
the velocity model. Second, the forward modelling is different: 
LSRTM performs reflectivity-based Born modelling and typically 
excludes surface multiples, while FWI performs a more accurate 
acoustic modelling and has the ability to include surface multi-
ples. Third, LSRTM, like RTM, only uses the reflection mode as 
input, while FWI can accommodate diverse propagation modes 
(i.e., diving waves, primary reflections, multiple reflections 
etc). Finally, the non-linear nature of the FWI inverse problem 
requires a multi-band approach in which multiple passes of FWI 
are performed, each stepping from low to successively higher 

Figure 7 (A) regular RTM image; (B) Adaptive LSRTM image.
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focusing and coherency is much improved, and the most striking 
image improvement is that FWI can heal the disrupted event, 
which is caused by the wrong velocity model near the salt flank.

Figure 10 shows the comparison of the LSRTM image and 
FWI imaging, based on the same FWI velocity model. FWI imag-
ing better resolves the sediment events towards the salt boundary 
termination. This could be due to FWI using all the propagation 
modes including diving wave and multiples, in addition to the 
reflection mode, which therefore illuminates the subsalt area better. 
The FWI image is cleaner and shows a more broadband image, 
which could be attributed to several reasons: the multi-frequency/
scale FWI approach enhances the low-frequency content, helping 
to suppress the sidelobes of the source wavelet and secondly FWI 
estimates the source wavelet more effectively, therefore it has a 
source wavelet deconvolution effect during the iterative data-fitting 
process. The FWI image is without a ghosted source wavelet, but in 
RTM the source wavelet is embedded in the image.

OBN survey in shallow water North Sea: A dense OBN 
survey was acquired by BP in 2017 over the Clair field in North 
Sea, with a source sampling of 25 m x 25 m, and receivers spaced 
at 50 m x 100 m.

Figure 11 shows the effectiveness of the FWI process as a 
velocity model update tool. Comparing the initial model (top left) 
to the updated model after FWI (top right), FWI can effectively 
resolve the shallow high-resolution high-velocity anomalies; 
note that it also changes the deeper velocity structure quite sig-
nificantly. Moreover, the high-resolution velocity model derived 
by FWI clearly improves the RTM-migrated section as shown in 
the bottom-right pane: events below the shallow high-velocity 
anomalies are flatter and more focused, with deeper reservoir 
events being less wavy and better focused compared to the 
corresponding RTM-migrated section, which was obtained using 
the initial model (bottom left)

Figure 12 shows the comparison between RTM and FWI-im-
aging. The left pane shows the result obtained via RTM and the 
right pane shows the result obtained via FWI imaging, where the 
final FWI velocity model shown in Figure 11 was used in both 
cases. Comparing the FWI imaging result with the RTM result, 
we see that FWI imaging clearly provides additional clarity and 
sharpness. Moreover, FWI imaging has less migration artifacts 

for refining the model (of course FWI requires use of that same 
very fine propagation grid, but only for its final multi-band pass). 
A third explanation for the observation of superior resolution 
after FWI imaging lies in a practical nuance associated with the 
Born modelling step in LSRTM. The wavefield convolution with 
reflectivity model in Born modelling serves as a bandpass filtering. 
While in principle the reflectivity model can be captured with high 
accuracy through use of a very small numerical grid (i.e, typi-
cally much smaller than propagation grid), in practice efficiency 
considerations dictate that this grid size be selected to be larger 
than that which is required for complete capture of the reflectivity 
information. This ‘reflectivity aliasing’ can give rise to smearing in 
the final image. By contrast the acoustic modelling approach used 
in FWI does not require specification of a reflectivity model and so 
does not suffer from this smearing effect.

FWI imaging data examples
In this section, we show two real data examples of FWI imaging 
to demonstrate its usefulness. One example is from the US Gulf 
of Mexico and another is from the North Sea.

Sparse OBN survey in deep-water Gulf of Mexico: A 
large-scale sparse node survey called Amendment was conducted 
in the Gulf of Mexico in 2019. About 3000 nodes, spaced at 1000 
m by 1000 m were deployed, with a source spacing of 50 m by 
100 m. The programme was designed to acquire extra-long offset 
node data, with the objective of using FWI to derive a better 
velocity model and reimage the underlying pre-exiting WAZ data 
(Roende, et al, 2020). A minimum 40 km offset for each node was 
acquired to ensure enough deep penetration.

In Figure 9, the left side shows the velocity models and the 
right side shows the corresponding RTM images; the upper row 
is the legacy model and corresponding image, and lower row is 
FWI model and corresponding image. These demonstrate several 
advantages and improvements over the legacy model. First, FWI 
can automatically modify the salt geometry. It also resolves the 
low-velocity gas clouds in the shallow part of the section, and sig-
nificantly modifies the sediment velocity near the salt, which is 
typically challenging for ray-based tomography to resolve. Also, 
the FWI velocity model follows the geological structure quite 
well. Comparing the RTM images, after FWI the subsalt image 

Figure 8 Comparison of LSRTM flow and data-domain 
FWI imaging flow.
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Conclusions
LSRTM provides better image quality compared to conventional 
RTM. Two different types of LSRTM algorithms exist in the 
industry, each serving a different purpose. Single iteration 

and a higher S/N. Most importantly, FWI imaging shows more 
subtle information at the reservoir level, including details 
which appear to be altogether absent from the regular RTM  
result.

Figure 9 Left figures: velocity model. right figures: Corresponding RTM images. Upper pictures are before FWI and bottom pictures are after FWI.

Figure 10 Left figures are the velocity model. Upper right is LSRTM image and bottom right is FWI image.
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main LSRTM, which carries many advantages: robustness with 
respect to initial velocity model errors, the ability to use the full 
wavefield (i.e., diving waves and primary and multiple reflections), 
and improved efficiency in its use of multi-frequency bands. It is 
conceivable that the industry may eventually be able to replace the 
conventional processing flow with a single step of FWI imaging.
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image-domain LSRTM is efficient and can effectively com-
pensate for illumination, can improve amplitude fidelity, and is 
generally more suitable for generating AVO-friendly gathers. 
Data-domain LSRTM is an iterative approach which tends to 
broaden the spectrum and improves event focusing and reso-
lution. Despite offering the above benefits, LSRTM carries the 
limitation that it is a linear inversion algorithm, and so requires a 
highly-accurate velocity model.

With the convergence of LSRTM and FWI, FWI is starting to 
extend its applicability beyond velocity updating into the realm 
of direct structural imaging through the FWI imaging process. 
Comparing FWI imaging with data-domain LSRTM, the former 
tool can be viewed as a natural extension of the latter. Specifically, 
FWI imaging is a non-linear inversion-based variant of data-do-

Figure 11 Upper row shows the velocity models. Bottom row shows the corresponding RTM images. Left side is for initial velocity model. Right side is after FWI update.

Figure 12 Comparison of regular RTM image vs FWI imaging based on the same final FWI velocity model. Left: Regular RTM image. Right: FWI imaging.
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